GEOMETRY - SHEET 2 - Vector Product. Vector Algebra.

1. Write the equations of each of the following lines in the form $\mathbf{r} \wedge \mathbf{a}=\mathbf{b}$.
(i) The line through the points $(1,1,1)$ and $(1,2,3)$.
(ii) The line with equation $(x-1) / 2=y / 3=z+1$.
(iii) The intersection of the planes $x+y+z=1$ and $x-y-z=2$.
2. Let

$$
\mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right), \quad M=\left(\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right) .
$$

Show that $\mathbf{a} \wedge \mathbf{b}=M \mathbf{b}$ and use the vector triple product to show that $M^{3}=-|\mathbf{a}|^{2} M$.
3. (i) Let A, B, C be three points in space with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ from an origin O. Show that A, B and C are collinear if and only if

$$
\mathbf{a} \wedge \mathbf{b}+\mathbf{b} \wedge \mathbf{c}+\mathbf{c} \wedge \mathbf{a}=\mathbf{0} .
$$

(ii) Show that the equation of the plane containing three non-collinear points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is

$$
\mathbf{r} \cdot(\mathbf{a} \wedge \mathbf{b}+\mathbf{b} \wedge \mathbf{c}+\mathbf{c} \wedge \mathbf{a})=[\mathbf{a}, \mathbf{b}, \mathbf{c}] .
$$

Deduce that four points A, B, C, D with respective position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are coplanar if and only if

$$
[\mathbf{a}, \mathbf{b}, \mathbf{c}]-[\mathbf{b}, \mathbf{c}, \mathbf{d}]+[\mathbf{c}, \mathbf{d}, \mathbf{a}]-[\mathbf{d}, \mathbf{a}, \mathbf{b}]=0 .
$$

4. (i) Let A be a 3×3 matrix and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three column vectors in \mathbb{R}^{3}. Use the determinant product rule to show that

$$
[A \mathbf{u}, A \mathbf{v}, A \mathbf{w}]=\operatorname{det} A \times[\mathbf{u}, \mathbf{v}, \mathbf{w}]
$$

(ii) Let T be the tetrahedron with vertices $(0,0,0),(0,0,1),(0,1,0)$ and $(1,0,0)$. Let $0<c<1$. Show that the triangular intersection of T with the plane $z=c$ has area $(1-c)^{2} / 2$. Hence find the volume of T.
(iii) Deduce that the volume of the tetrahedron with vertices $\mathbf{0}, \mathbf{u}, \mathbf{v}, \mathbf{w}$ is given by $|[\mathbf{u}, \mathbf{v}, \mathbf{w}]| / 6$.
5. (i) Let \mathbf{a} and \mathbf{b} be independent vectors in \mathbb{R}^{3}. Show that $|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}=|\mathbf{a} \wedge \mathbf{b}|^{2} \neq 0$.
(ii) Using the fact that \mathbf{a}, \mathbf{b} and $\mathbf{a} \wedge \mathbf{b}$ form a basis of \mathbb{R}^{3}, or otherwise, show that the planes

$$
\mathbf{r} \cdot \mathbf{a}=\alpha, \quad \mathbf{r} \cdot \mathbf{b}=\beta,
$$

intersect in a line parallel to $\mathbf{a} \wedge \mathbf{b}$.
(iii) Under what conditions do the equations in (ii) and the equation $\mathbf{r} \cdot \mathbf{c}=\gamma($ where $\mathbf{c} \neq \mathbf{0})$ have a unique common solution?
6. (Optional) Two non-parallel lines l_{1} and l_{2} in three-dimensional space have respective equations $\mathbf{r} \wedge \mathbf{a}_{1}=\mathbf{b}_{1}$ and $\mathbf{r} \wedge \mathbf{a}_{2}=\mathbf{b}_{2}$.

For $i=1,2$ let Π_{i} denote the plane of the form $\mathbf{r} \cdot\left(\mathbf{a}_{1} \wedge \mathbf{a}_{2}\right)=k_{i}$ which contains l_{i}. Show that $k_{1}=\mathbf{b}_{1} \cdot \mathbf{a}_{2}$ and find k_{2}. Hence show that the least distance between the lines equals

$$
\frac{\left|\mathbf{a}_{1} \cdot \mathbf{b}_{2}+\mathbf{a}_{2} \cdot \mathbf{b}_{1}\right|}{\left|\mathbf{a}_{1} \wedge \mathbf{a}_{2}\right|}
$$

